
Azure App 
Service Environment
An Overview

ASE

ASE
V1

ASE
V2

ASE
V3

AASP



Azure App Service Environment (ASE) is an Azure PaaS service that provides a good alternative to 
customers who are already leveraging Azure App Service Plan, and also want additional security 
for surfacing or directly connecting to business-critical data in on-premise environments. This 
service is also an alternative for customers contemplating migration of sensitive line-of-business or 
intranet-based applications to Azure, which are expensive and risk-ridden programs. ASE allows 
customers to host business-critical applications on Azure service while adhering to stringent 
security and compliance requirements

Introduction

Azure provides different options for hosting 
web applications, APIs, functions and 
container-based apps on the cloud. First option 
that is most widely used is Azure App Service 
Plan (AASP). Azure App Service Plan is 
multi-tenant environment, where the environment 
is shared by multiple clients and their apps. There 
are various pricing plans for Azure App Service 
ike Standard, Premium etc., which provide 
infrastructure based on the plan selected. In 
multi-tenant Azure App Service Plan, the end 
points of the hosted application are exposed to 
public internet. Though there are ways to secure 
applications hosted in Azure App Service Plan, 
they are still exposed to a certain degree, to 
vulnerabilities associated with public internet.

A more secured option for hosting applications is Azure 
App Service Environment, where there is greater focus 
on isolation of the hosting infrastructure from the external 
world and a more powerful infrastructure than Azure App 
Service Plan. ASE can be considered as Azure App Service 
Plan injected in client’s virtual network in Azure. In ASE, 
network traffic can be controlled with network security 
group via direct access from internet. Applications hosted 
in ASE can be completely locked down from the external 
world. Client’s virtual network in Azure can be connected 
with on-premise network with site-to-site VPN connectivity 
or Express Route, which allows the application hosted in 
ASE to be integrated with on-premise applications or 
services or databases. Also, the application hosted in ASE 
can be treated as an intranet application which can be 
accessed by on-premise users. ASE can host Windows web 
apps, Linux web apps, Docker container-based apps, and 
Azure Functions. A table on the differences between AASP 
and ASE is given below.

What is Azure App 
Service Environment



- It is an environment (i.e. compute 
  and storage resources) shared
  between applications or app 
  services (Web apps, API apps, 
  mobile apps or Azure functions)     
  hosted by the customer

- Incoming traffic from internet 
  is allowed.

- In App Service Plan, users cannot   
  select virtual network or subnet
  where application will be hosted.

- App Service Plan is more suitable 
  for public facing applications
  where there is no requirement for   
  complete isolation of the hosting 
  infrastructure.

- It is a secured environment where 
  multiple app services or App Service   
  Plans for a single customer are 
  hosted. It wraps these services or 
  plans in a VNet and provides load 
  balancers for each ASE.

- Incoming traffic from internet can be 
  totally closed by setting up ILB ASE.

- In ASE, applications are hosted in 
  customer’s virtual network and 
  subnet

- ASE can be setup with different 
  models like External ASE, ILB ASE 
  and with WAF (Web Application 
  Firewall) which enables to host 
  both external facing and internal 
  applications.

Comparison between App Service Plan and App Service Environment

App Service Plan (AASP) App Service Environment (ASE)

Figure 1 :

Shows a logical depiction 
of the main di�erence 
between an App Service 
Plan and an App Service 
Environment:



With the logical distinction established above, let us move on to the next level details of the App 
Service Environment. The rest of this whitepaper will explore different aspects of App Service 
Environment. Figure 2 below depicts how traffic from the internet (of the left) is routed through the 
Azure App Service Environment, hosted on a client virtual network on Azure to leverage services 
and data hosted on on-premise data centers.

Important features of ASE: 

Figure 2: Azure App Service Environment on client virtual network 

- An ASE is composed of front ends and workers. Front ends are responsible 
  for HTTP/HTTPS termination and automatic load balancing of app requests 
  within an ASE.

- Front ends are automatically added as the App Service Plans in the ASE 
  are scaled out.

- Workers are roles that host customer applications (e.g., LOB applications, 
  intranet applications). Workers are available in three fixed sizes:

  • One vCPU/3.5 GB RAM   • Two vCPU/7 GB RAM   • Four vCPU/14 GB RAM

- App Service Environments hold App Service plans, and App Service Plans 
  hold apps.

- When an app is scaled, the App Service Plan is also scaled and all the apps 
  in that same plan are also scaled. When an App Service Plan is scaled, the 
  needed infrastructure is added automatically.

- Security: The fact that application is hosted in isolated environment means 
  that application will not be impacted by any activity or outage from any 
  applications of other customers. Rules can be setup in NSG to control 
  network traffic which ensures no unwanted traffic reaches the application.

- Three versions of App Service Environment (ASE) have been released till now. 
  The first version of the App Service Environment (ASE v1) was released in 
  late 2015. App Service Environment (ASE) v2 was released in July 2017. App 
  Service Environment (ASE) v3 has been generally available from July 2021. 
  In ASE v1, resources like front end, worker pool and IP address had to be 
  manually managed. That caused some confusion to customers. In ASE 
  v2 this issue was addressed, and the service became more PaaS-like where 
  a customer does not need to manually manage front end, worker pool, and IP 
  address. The customer only needs to select the type of Isolated plan. In 
  ASE v3 there has been further improvement in pricing front and 
  underlying infrastructure.



Many organizations are using ASE for greater security and isolation. One such case study is of Nobel 
Prize web site where Linux platform over ASE is used. Nobel Media used custom built Linux container to 
host their website in Azure. The website is built with WordPress content management system with PHP 
scripting language and MySQL backend. As the application is hosted inside their own virtual network in 
Azure, it provides better control over network access. As all the infrastructure is managed by Azure, it 
allows Nobel Media to focus on their business areas, like content creation. During the time of Nobel Prize 
announcement, the traffic in the site increases many folds. Azure ASE has provided the required scaling 
to handle large traffic spikes. Apart from this, by hosting their website in Azure, they are able to leverage 
other Azure services like AI to improve their content.

In External ASE (refer to figure 3 above), hosted apps are exposed on an internet-accessible IP address. 
External ASE have virtual IP on an external public facing IP address. In External ASE, apps are registered 
with Azure DNS. There are no additional steps required for the apps to be publicly available. Applications 
hosted in ASE can be published similar to app hosted in multi-tenant app service though web 
deployment, FTP, CI, and from IDE like Visual Studio. For External ASE, dedicated IP address can be 
allocated to hosted app. In External ASE, IP-based TLS/SSL binding can be configured for hosted app in 
the same way as in the multi-tenant app service.

A Case Study:

Di�erent deployment models for ASE
There are 2 ASE deployment models:

External ASE model:
 
This allows application hosted 
in ASE to be exposed on an 
internet-facing IP.

Internal Load Balancer ASE model: 

In this model, application hosted 
in ASE can be either be accessed 
from within the virtual network or 
network connected to the virtual 
network. The internal endpoint is 
an internal load balancer (ILB).

External ASE:

Figure 3: External ASE



This model (refer to figure 4 above) of deployment consists of Internal Load Balancer (ILB) which acts 
as endpoint for communication with the hosted apps. For ILB ASE, the address of the ILB address is the 
endpoint for HTTP/S, FTP/S, web deployment, and remote debugging. Applications hosted in ILB ASE 
can be protected with a WAF device. With an ILB ASE, DNS entries need to be maintained in clients own 
DNS server or with Azure DNS private zones. In ILB ASE, the SCM (Kudu) site isn't accessible from 
outside the VNet. With an ILB ASE, the publishing/deployment endpoints are only available through the 
ILB.Applications can be published to an ILB ASE from Azure DevOps by installing a self-hosted release 
agent in the virtual network that contains the ILB ASE. For SCM also, DNS endpoints need to be defined. 

Web Application Firewall (WAF) provide protection against vulnerabilities like DDos attack, SQL 
injections, cross site scripting (XSS) etc., to web applications. Refer to figure 5 below. A web application 
firewall (WAF) device can be configured with ILB ASE to expose selected apps to the internet and keep 
the rest only accessible from the VNet. This enables clients to build secure multi-tier applications where 
web-based, front-end layer is exposed to the internet and backend services remain secured in client 
virtual network. Web application firewall can be configured with Barracuda WAF, which is available in 
Azure Marketplace or with Azure Application Gateway WAF.

Internal Load Balancer ASE model: 

Configure an ILB ASE with a WAF device

Figure 4: ILB ASE

Figure 5: ILB ASE with a WAF Device



- ASE can host 100 App Service Plan instances.

- Among the benefits of ASE is a static IP address 
that can be used for both the inbound and outbound 
IP address for the apps. The IP address is dedicated 
for the client.

- The addition of ILB support meant that customers 
could now host intranet sites in the cloud. Clients 
could take an LOB application that they didn’t want 
to be Internet-accessible and deploy it into 
ILB-enabled ASE. The ILB sits on one of the VNet IP 
addresses, so it’s accessible only from within the 
VNet or from hosts that have access to the VNet 
over a VPN.

- The ILB-enabled ASE can be deployed with Web 
Application Firewall (WAF)-fronted applications.

- For WAF-fronted ASE applications, a customer 
could use a WAF virtual device to act as the internet 
endpoint for its ILB ASE-hosted apps, which adds an 
additional security layer for internet-accessible apps.

- In a two-tier application, the web-accessible app 
could be hosted in either the multi-tenant app service 
or from another ASE, and the back-end-secured API 
apps could then be hosted in the ILB ASE.

- Application can be scaled geographically by 
hosting instances in geo-specific ASEs and then 
load balancing them with traffic manager. End user 
will access the application with generic URL and 
traffic manager will redirect them to region-
specific endpoint.

GEO-distributed scale

Advantages of ASE

Application which are accessed in different 
geographic regions need to be setup in  
those geographies to reduce latency. The 
end users can access such applications 
with generic URL, and load balancer like 
Azure Traffic manager can point the user 
request to the application instance closer 
to end user.

Applications which have opted for ASE 
and have higher requests per second can 
scale by setting up a number of ASEs in 
different regions. Refer to figure 6 below. 
Azure Traffic Manager can be used as 
load balancer which can redirect the 
user to ASE closer to his location.

Figure 6: instances spread across geos load-balanced by azure tra�c manager



Setting up ASE

ASE can be setup in the following three ways:

1 From Azure Portal, when creating App Service plan, select Isolated price plan. This way, 
ASE and App Service plan within it is created in one go. Here details like runtime stack, OS, 
region, ASE name, Virtual IP type (internal or external) etc., need to be selected/filled up.

Figure 7: Select Isolated Plan for creating ASE 

Figure 8: Select options like VIP type, OS etc. 



2 Standalone ASE:  Search for App Service Environment in Azure Market place and create 
ASE. This approach is for creating ILB ASE. While creating ASE, details like subscription 
name, resource group, OS type, name of ASE, Virtual IP (Internal for ILB ASE or External 
for Eexternal ASE), virtual network name and subnet etc., need to be selected/filled up. 
After ASE is created, apps can be created in it by using the normal process. ASE need to be 
selected as the location for the new apps to be hosted in ASE. 

Figure 9: Create standalone ASE 

Figure 10: Select virtual network and subnet 



- Create ASE using ARM template. ARM template 
and examples are available in the reference section 
at the end.

    Parameters to be passed to ARM template while 
    creating ASE:

    • aseName
    • location
    • existingVirtualNetworkName
    • existingVirtualNetworkResourceGroup
    • existingSubnetName

- While creating ILB ASE, some additional 
parameters need to be passed:

   • internalLoadBalancingMode: The value is set to 3 
      in most cases which means HTTP/HTTPS traffic 
      and control/data channel ports listened to by 
      FTP service will be bound to an ILB allocated 
     virtual network internal address. If the value is set 
     to 2 then control/data channel ports listened to 
     by FTP service will be bound to an ILB allocated 
     virtual network internal address. HTTP/HTTPS 
     traffic remains on public virtual IP.

   • dnsSuffix: This is default root domain assigned to 
     ASE. For ILB ASE, this should be something 
     which is relevant and resolvable to client internal 
     environment.

   • ipSslAddressCount: Default value is 0 as there 
      are no explicit IP-SSL addresses for an ILB ASE.

3 By deploying ARM template:  

Pre-requites for creating ASE through ARM template are:  

- Resource Manager VNet. 

- A subnet in that VNet. Recommended subnet size is /24 with 256 addresses to   
  accommodate future growth and scaling needs.  

- The resource ID from the VNet. This information is available from the Azure portal under 
  your virtual network properties. 

- The subscription where the ASE is to be created. 

- The location where ASE needs to be deployed. 

- If External ASE is created, no more steps are required. 
   For ILB ASE, few more steps are required.

- After ILB ASE is created, TLS/SSL certificate that 
  matches ILB ASE domain need to be uploaded. The 
  uploaded certificate is assigned to ILB ASE as default 
  TLS/SSL certificate.

Steps for ASE creation:



Pricing 
plans

There is an App Service pricing plan called ‘Isolated Plan’ which is used for ASEs. All App Service 
plans that are hosted in the ASE are in the Isolated pricing SKU. Isolated rates for App Service 
plans can vary by region. In addition to the price of App Service plans, there's a flat rate stamp 
fee for the ASE itself which is $1.430/hour (~$1,043.811/month). The flat rate doesn't change with 
the size of ASE. There are 3 categories of Isolated plans which are listed below :

ASE

In ASEv1, all of the resources need to be managed 
manually. That includes the front ends, workers, and IP 
addresses used for IP-based TLS/SSL bindings. Before 
scaling out App Service plan, the worker pool needs to 
be scaled out. In ASEv1, user need to pay for each vCPU 
allocated. That includes vCPUs used for front ends or 
workers that aren't hosting any workloads. In ASEv1, the 
default maximum-scale size of an ASE is 55 total hosts. 
That includes workers and front ends. One advantage 
to ASEv1 is that it can be deployed in a classic virtual 
network and a resource manager virtual network.

ASE

With ASEv2, there are no more worker pools to 
manage. When ASP in ASE is scaled, needed workers 
are added automatically. In ASE2, user need to select 
the Isolated pricing plan and accordingly resources 
are created. With ASEv2, the maximum default scale
is now 100. The ASEv2 also now uses Dv2-based 
dedicated workers which have faster CPU’s, twice the 
memory per core and SSDs. The new ASE dedicated 
workers’ sizes are 1 core 3.5 GB, 2 core 7 GB, and 4 
core 14 GB. The end result is that 1 core on ASEv2 
performs better than 2 cores in ASEv1.

ASE 

The flat rate stamp fee per ASE instance has been removed 
in ASE v3. ASE v3 is available through Isolated v2 pricing 
plan. As part of Isolated v2 plan, the PAYG rates are reduced 
and the per instance stamp fee has been removed, reducing 
the cost of deployment by up to 80%. In ASEv3, there is 
no longer any inbound or outbound management traffic 
in the customer VNet. ASE v3 has no internet hosted 
dependencies being called from the customer network. 
In ASEv3, the underlying technology is based on Virtual 
Machine Scale Sets (VMSS) instead of cloud services which 
provides number of improvements including better load 
balancers, zone redundancy and multiple other things.

V3 Latest Version

Di�erent versions of 
ASE ( v1, v2, v3 )



Conclusion

AUTHOR

This whitepaper was an attempt to give the reader a holistic view of the Azure Service 
Environment since this Azure PaaS offering is relatively unknown. Since cloud services and their 
features change frequently. A few things stated here might get outdated eventually. The reader 
is requested to look up reliable sites from Microsoft for most recent updates. The references 
used for this whitepaper are provided below.

References:

https://docs.microsoft.com/en-us/azure/app-service/environment/intro 

https://docs.microsoft.com/en-us/azure/app-service/environment/using-an-ase 

https://docs.microsoft.com/en-us/azure/app-service/environment/using

https://docs.microsoft.com/en-us/azure/app-service/environment/network-info 

https://docs.microsoft.com/en-us/archive/msdn-magazine/2017/april/azure-the-new-azure-app-

service-environment 

ARM Template and example for creating ASE: 

https://azure.microsoft.com/en-us/resources/templates/web-app-asev2-create/ 

ARM Template and example for creating ILB ASE: 

https://azure.microsoft.com/en-us/resources/templates/web-app-asev2-ilb-create/

Prasenjit Paul

Technical Architect, Digital Business, HCL

 
Prasenjit is a technical Architect with 17+ years of experience in design and development of 
applications in Microsoft platform and Azure cloud. He has been working on solution design and 
managing teams engaged in application development in Microsoft platform and Azure. His main 
areas of expertise are Azure, Azure DevOps, ASP.NET MVC, Angular, SQL Server, and SharePoint.



W
I-
10

52
4
27

0
8
27

0
-E

N
0
0
G
L


